3.3.38 \(\int \frac {\tanh ^{-1}(a x)^2}{x (1-a^2 x^2)} \, dx\) [238]

Optimal. Leaf size=66 \[ \frac {1}{3} \tanh ^{-1}(a x)^3+\tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )-\tanh ^{-1}(a x) \text {PolyLog}\left (2,-1+\frac {2}{1+a x}\right )-\frac {1}{2} \text {PolyLog}\left (3,-1+\frac {2}{1+a x}\right ) \]

[Out]

1/3*arctanh(a*x)^3+arctanh(a*x)^2*ln(2-2/(a*x+1))-arctanh(a*x)*polylog(2,-1+2/(a*x+1))-1/2*polylog(3,-1+2/(a*x
+1))

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {6135, 6079, 6095, 6203, 6745} \begin {gather*} -\frac {1}{2} \text {Li}_3\left (\frac {2}{a x+1}-1\right )-\text {Li}_2\left (\frac {2}{a x+1}-1\right ) \tanh ^{-1}(a x)+\frac {1}{3} \tanh ^{-1}(a x)^3+\log \left (2-\frac {2}{a x+1}\right ) \tanh ^{-1}(a x)^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[a*x]^2/(x*(1 - a^2*x^2)),x]

[Out]

ArcTanh[a*x]^3/3 + ArcTanh[a*x]^2*Log[2 - 2/(1 + a*x)] - ArcTanh[a*x]*PolyLog[2, -1 + 2/(1 + a*x)] - PolyLog[3
, -1 + 2/(1 + a*x)]/2

Rule 6079

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTanh[c*x
])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Dist[b*c*(p/d), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/
d))]/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6135

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Dist[1/d, Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]

Rule 6203

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan
h[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 - u]/
(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2
/(1 + c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(a x)^2}{x \left (1-a^2 x^2\right )} \, dx &=\frac {1}{3} \tanh ^{-1}(a x)^3+\int \frac {\tanh ^{-1}(a x)^2}{x (1+a x)} \, dx\\ &=\frac {1}{3} \tanh ^{-1}(a x)^3+\tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )-(2 a) \int \frac {\tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx\\ &=\frac {1}{3} \tanh ^{-1}(a x)^3+\tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )-\tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1+a x}\right )+a \int \frac {\text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx\\ &=\frac {1}{3} \tanh ^{-1}(a x)^3+\tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )-\tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1+a x}\right )-\frac {1}{2} \text {Li}_3\left (-1+\frac {2}{1+a x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 60, normalized size = 0.91 \begin {gather*} -\frac {1}{3} \tanh ^{-1}(a x)^3+\tanh ^{-1}(a x)^2 \log \left (1-e^{2 \tanh ^{-1}(a x)}\right )+\tanh ^{-1}(a x) \text {PolyLog}\left (2,e^{2 \tanh ^{-1}(a x)}\right )-\frac {1}{2} \text {PolyLog}\left (3,e^{2 \tanh ^{-1}(a x)}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[a*x]^2/(x*(1 - a^2*x^2)),x]

[Out]

-1/3*ArcTanh[a*x]^3 + ArcTanh[a*x]^2*Log[1 - E^(2*ArcTanh[a*x])] + ArcTanh[a*x]*PolyLog[2, E^(2*ArcTanh[a*x])]
 - PolyLog[3, E^(2*ArcTanh[a*x])]/2

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 63.51, size = 1188, normalized size = 18.00

method result size
derivativedivides \(\text {Expression too large to display}\) \(1188\)
default \(\text {Expression too large to display}\) \(1188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(a*x)^2/x/(-a^2*x^2+1),x,method=_RETURNVERBOSE)

[Out]

1/2*I*arctanh(a*x)^2*Pi*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1))*csgn(I/((a*x+1)^2/(-a^2*x^2+1)+1))*csgn(I*((a*x+1)^
2/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a^2*x^2+1)+1))+arctanh(a*x)^2*ln(a*x)-arctanh(a*x)^2*ln((a*x+1)^2/(-a^2*x^2+1)-
1)+arctanh(a*x)^2*ln(1-(a*x+1)/(-a^2*x^2+1)^(1/2))+arctanh(a*x)^2*ln(1+(a*x+1)/(-a^2*x^2+1)^(1/2))-2*polylog(3
,-(a*x+1)/(-a^2*x^2+1)^(1/2))-2*polylog(3,(a*x+1)/(-a^2*x^2+1)^(1/2))-1/4*I*arctanh(a*x)^2*Pi*csgn(I/((a*x+1)^
2/(-a^2*x^2+1)+1))*csgn(I*(a*x+1)^2/(a^2*x^2-1))*csgn(I*(a*x+1)^2/(a^2*x^2-1)/((a*x+1)^2/(-a^2*x^2+1)+1))+2*ar
ctanh(a*x)*polylog(2,-(a*x+1)/(-a^2*x^2+1)^(1/2))+2*arctanh(a*x)*polylog(2,(a*x+1)/(-a^2*x^2+1)^(1/2))-1/3*arc
tanh(a*x)^3-1/2*arctanh(a*x)^2*ln(a*x+1)-1/2*arctanh(a*x)^2*ln(a*x-1)+1/4*I*arctanh(a*x)^2*Pi*csgn(I*(a*x+1)^2
/(a^2*x^2-1))^3+1/2*I*arctanh(a*x)^2*Pi*csgn(I/((a*x+1)^2/(-a^2*x^2+1)+1))^3+1/2*I*arctanh(a*x)^2*Pi*csgn(I*((
a*x+1)^2/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a^2*x^2+1)+1))^3+1/4*I*arctanh(a*x)^2*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1)/((
a*x+1)^2/(-a^2*x^2+1)+1))^3-1/2*I*arctanh(a*x)^2*Pi*csgn(I/((a*x+1)^2/(-a^2*x^2+1)+1))^2+1/2*I*arctanh(a*x)^2*
Pi-1/2*I*arctanh(a*x)^2*Pi*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1))*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a
^2*x^2+1)+1))^2-1/4*I*arctanh(a*x)^2*Pi*csgn(I*(a*x+1)^2/(a^2*x^2-1))*csgn(I*(a*x+1)^2/(a^2*x^2-1)/((a*x+1)^2/
(-a^2*x^2+1)+1))^2+1/4*I*arctanh(a*x)^2*Pi*csgn(I/((a*x+1)^2/(-a^2*x^2+1)+1))*csgn(I*(a*x+1)^2/(a^2*x^2-1)/((a
*x+1)^2/(-a^2*x^2+1)+1))^2+1/4*I*arctanh(a*x)^2*Pi*csgn(I*(a*x+1)/(-a^2*x^2+1)^(1/2))^2*csgn(I*(a*x+1)^2/(a^2*
x^2-1))-1/2*I*arctanh(a*x)^2*Pi*csgn(I/((a*x+1)^2/(-a^2*x^2+1)+1))*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/((a*x+1)^
2/(-a^2*x^2+1)+1))^2+1/2*I*arctanh(a*x)^2*Pi*csgn(I*(a*x+1)/(-a^2*x^2+1)^(1/2))*csgn(I*(a*x+1)^2/(a^2*x^2-1))^
2+arctanh(a*x)^2*ln(2)+arctanh(a*x)^2*ln((a*x+1)/(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)^2/x/(-a^2*x^2+1),x, algorithm="maxima")

[Out]

-1/8*log(a*x + 1)*log(-a*x + 1)^2 - 1/24*log(-a*x + 1)^3 + 1/4*integrate(((a^2*x^2 + a*x + 2)*log(a*x + 1)*log
(-a*x + 1) - log(a*x + 1)^2)/(a^2*x^3 - x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)^2/x/(-a^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-arctanh(a*x)^2/(a^2*x^3 - x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {\operatorname {atanh}^{2}{\left (a x \right )}}{a^{2} x^{3} - x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(a*x)**2/x/(-a**2*x**2+1),x)

[Out]

-Integral(atanh(a*x)**2/(a**2*x**3 - x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)^2/x/(-a^2*x^2+1),x, algorithm="giac")

[Out]

integrate(-arctanh(a*x)^2/((a^2*x^2 - 1)*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} -\int \frac {{\mathrm {atanh}\left (a\,x\right )}^2}{x\,\left (a^2\,x^2-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-atanh(a*x)^2/(x*(a^2*x^2 - 1)),x)

[Out]

-int(atanh(a*x)^2/(x*(a^2*x^2 - 1)), x)

________________________________________________________________________________________